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hexagonal Brillouin zone. (The lattice
structure is shown in Fig. 8.2**1) (<))
An optical transition near the K point,
which corresponds to the circled region of
(). Shading indicates that the states arc
occupied. The data in (a) are from
Macliou el al. (2002), (c) American
Physical ~ Society, reprinted  with
permission.

8.5.2 Graphene

Graphene is a two-dimensional material
with many interesting physical properties.
Its band structure is shown in Fig.
8.21(a), with the notation for the high
symmetry points of the Brillouin zone
given in Fig. 8.21(b).

The top of the valence band occurs at the
K point, where there is no energy gap to
the 7r* states in the conduction band.
Figure 8.21(c) shows an enlargement of
the band structure near the K point. Note
that the bands are linear at this point.

The linear band dispersion of graphene at
the K point gives rise to many striking
properties. The most obvious one is tViat
all the conduction electrons have the
same velocity of ~ ¢/300, irrespective of
their energy. (See eqgn 2.25.) This
contrasts with the usual behaviour in
which E (x k1, and the velocity increases
as E increases. The exception to this is
when the particle has a negligibly small
rest mass. This can be seen from the
Einstein energy:

Ez=mV+rvVv, (8-13)

where in is the rest mass micl p is the

Céc diém c6 tinh doi xiing cao cua ving
Brillouin lyc giac. (C4u trac mang tinh
thé dugc biéu dién trong Hinh 8.2 ** 1)
(<) Dich chuyén quang hoc gan diém
K, twong rng vé1 vung khoanh tron trong
(@). Vung mo ung vaéi cac trang thai bi
chiém. Dit liéu trong (a) 14y tir cong trinh
cua Macliou va cac cong su (2002), (c)
ba dugc Hiép hoi Vat Iy Hoa Ky cho
phép sao chép.

8.5.2 Graphene

Graphene 13 mot vat liéu hai chiéu c6
nhiéu tinh chat vat 1y tha vi. Cau trac
ving ning luong ca né dugc biéu dién
trong H. 8.21(a), va ki hiéu cac diém dbi
xtng cao cua vung Brillouin dugc bicu
dién trong H. 8. 21(b).

Pinh ving héa tri xuat hién tai diém K, o
day ching ta thay khong co ving cim
Cua cac trang thai....trong vung dan.
Hinh 8.21(c) la anh phong dai Cau tric
ving gan diém K. Chung ta thay céc
duong cong tan sic 1a cac duong thang
tai diém nay.

CAu trac ving gém cac duong cong tan
sic thang cua graphene tai diém K lam
nay sinh nhiéu tinh chat néi bat. Tinh
chat dé thay nhét 1a tat ca cac electron
dan déu c6 cung van toc ~ ¢/300, bat ké
nang lugng cua ching (xem phuong
trinh 2.25). Piéu ndy tri nguoc Véi tinh
chat thong thuong d6 1a ....., va van toc
tang khi E tdng. Ngoai trr truong hop
hat c6 khdi luong nghi khong déng ké.
Chung ta c6 thé thiy duoc diéu nay tir
nang luong Einstein:




linear momentum. The second term
dominates when m is negligible, and the
energy is linear in p. implying E (X k. The
linear dispersion therefore implies that
the conduction electrons behave like
relativistic particles with negligible mass,
and must therefore be treated by the Dirac
equation  of  relativistic  quantum
mechanics. For this reason, the K point of
the Brillouin zone of graphene is known
as the Dirac point.

The relativistic properties of the electrons
in graphene have many fascinating
implications. Here, we concentrate just on
the optical properties. These are governed
by optical transitions between the valence
and conduction bands at the Dirac point,
as shown in Fig. 8.21(c). Sincc the energy
gap is zero, transitions are possible for all
photon frequencies. In a conventional
two-dimensional material, the transition
rate is imU-pondent, of frequency on
account of the constant density of states.
1 6 Section 6.4.2.) This argument., which
Is based on a parabolic E-k t ispeision,
clearly does not apply to graphene.
Nevertheless, graphene ¢ oes .show
similar behaviour, with the absorption
being independent ot the energy at optical
frcquencics. The interesting aspect is that
the absorption rate is governed only by
the fine structure constant a = e2/ ¢, with
the absorbance ot a single layer being
equal to no = 2.3%. We thus have a
simple solid state material that clearly
illustrates quantum electrodynamical
effects.

These predictions for graphene have been
confirmed by experiment. Figure 8.22(a)
shows the transmission spectrum of a




singlel layer of graphene in the visible
spectral region. The data show that the
absorbance is indeed independent of the
frequency, and takes a constant value of
tm = 2.3% per graphene layer. This
implies that the transmission of a
multilayer sample will be equal to 1 --
naN. where Ar is the number of graphene
layers, which is clearly demonstrated by
the data for multiple layers shown in Fig.
8.22(b). The absorbance of 2.3% per
layer might seem small at first thinking,
but is in fact very strong, given that the
graphene layer is only one atom thick.
8.5.3 Carbon nanotubes

A carbon nanotube can be considered as a
rollcd-up sheet of graphene. There are
many different ways to do this, and there
are therefore a great variety of nanotube
structures.  Consider the graphene
honeycomb latticel shown in Fig. 8.23.
The fundamental lattice vectors a\ and a2
of the structure are shown. In a nanotube.
thel graphene sheet is rolled up so that
one of the translation vectors e)f thel
lall icel becomes the circumference. We
can thus define the circumference vector
of the nanotube a.s:

Fig. 8.22 (a) Transmission of a single'
layer of graphene in the visible spectral
region. The dashed Iline is the
transmission expected tor a constant
absorbance of 7tg. The slight drop in the
transmission at short wavelengths is
possiblv.  caused by  hydrocarbon
contamination (b) Variation of the
transmission with the number of graphene
layers. Alter Nair et al. (2008), © AAAS,
reprinted with permission.
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where n\ and 112 are integers, and the
tube axis is perpendicular to c. This
circumfcrcnec vector is usually called the
chiral vector and is denoted (??i.n2). The
diameter of a nanotube is given by (see
Exercise 8.18):

ai\ =\a2\ = 0.2461 nm is the length of the
basis vectors.

Three different, types of circumference
vectors are indicated in Fig. 8.23. Tlio.se
with 112 = 0 and n-z — ni called 'zigzag’
and ‘armchair nanotubes respectively,
and all the remainder are simply called
‘chiral . The chiral angle H is defined as
the angle between the chiral vector and
the zigzag direction, and is given by (sec
Exercise 8.18):

Armchair mmotubcs 11ms have chiral
angles ol 30°.

Fig. 8.23 Definition of the lattice vectors
ai and a.2 for the graphene lattice, and the
chiral vectors for a nanotube. The chiral
angle 0 is the angle between the chiral
vector and the 'zigzag' direction.

In discussing the properties of carbon
nanotubes, it is important to distinguish
between single-walled nanotube
(SYVNT) and multi-wall nanotube
(MWNT) structures. As the names
suggest, these correspond respectively to
nanotubcs composed of a single cylinder
with a unique chiral vector, and those
composed of several concentric cylinders
with differing chiral vectors. Much
progress has been made in recent years in
techniques to isolate individual SWNTs,
making the study of nano tubes with well-
defined chiral vectors possible.




The electronic properties of nanotubes
follow from their chiral structure. We
have seen that graphene is a semimetal on
account of its zero energy gap at the K
point of the Brillouin zone. (See Fig.
8.21.) Nanotubes, by contrast, can be
either metallic or semiconducting. The
nanotube is metallic if (see Exercise
8.19):

Multi-wall  nanotubes will typically
contain some metallic and some
semiconducting tubes, and will therefore
usually be highly conducting.

where m is an integer (positive, negative,
or zero). In all other cases the nanotube is
a semiconductor with a finite energy gap
between the conduction and valcnce
bands. It is therefore apparent that one-
third of nanotubes are metallic, and two
thirds semiconducting.

The electrons in a nanotube are free to
move along the axis (usually defined as
the 2 direction), but experience two-
dimensional cylindrical confinement in
the perpendicular directions. We thus
have an almost ideal one-dimensional
system, which can be treated as a
quantum wire. (See Section G.l.) The
wave functions of the electrons are of the
form:

where kz is the wave vector along the
tube axis, L is the normalization length,
and (i, j) arc indices that identify the
quantum-confined circum-ferential states
of the tube. The energy of the electrons is
therefore given by:

where n is an integer that, specifies the
quant uui-eonfiiiod density of states per
unit, length for each band is given Incise
8.20):




as appropriate for a 1-D material. We thus
expect, van Hove singularities in the
density of states at the energies of each
quantized level.

Figure 8.24 illustrates the band structure
for  semiconducting and  metallic
nanotubes together with their density of
states. For each confined state we have a
parabolic band, with a van Hove
singularity at the energy threshold. In
semiconducting nanotubes, there is an
energy gap between the highest filled
state in the valence band and the lowest
empty slate in the conduction band, a.s
shown in part (a). The magnitude of this
gap varies with the tube diameter and lies
at about 0.8 eV (1500nm) for a tube with
a diameter of 1 mn. (Sec Fig. 8.25.)
Metallic nanotubes have the additional
linear band derived from the K point of
the Brillouin zone of graphene. (See Fig.
S.21 and its discussion.) Sincc the band
passes through the origin, | here is no gap
between the top of the valence band and
the bottom of the conduct ion baud. There
Is therefore a continuum of states between
the quantum-confined levels, as .shown in
part (b) of Fig. 8.24.

Optical transitions can occur between
states in the valence band and the
conduction band. 7’hc selection rules
dictate that the quantum number n 'if the
electron and hole states must be identical,
and conservation uf momentum requires
ihaf /c- is unchanged. Owing to the van
Hove sin-

See Scction 3.5 for an explanation of van
Hove singularities.




Fig. 8.25 Kataura plot of the calculated
energies of the confined states versus tube
diameter. The solid and open circles
correspond to semiconducting and
metallic nanotubes respectively. The first
three energy states are labelled according
to the notation of cqti 8.21, with
additional  superscripts to identify
semiconducting (s) and metallic (m)
nanotubes. See Kataura et al. (1999).
Data from Dr S. Maruyama,
www.photon.t.u-tokyo.
ac.jp/~mRruyama/iianotube.html.
gularities at the threshold for each band,
the transition late at photon energies that
satisfy

where the superscripts identify the
conduction and valence, bauds re
spectively. The En and £22 transitions are
illustrated for both semiconducting and
metallic nanotubcs in Figs 8.24(a) and (b)
respectively. Optical transitions are, of
course, possible at other photon energies,
but the transitions at the frequencies that
satisfy egn 8.21 are expected to stand out
from the continuum 011 account of their
higher transition rate.

Fluorescence can be observed in
semiconducting nanotubcs when
electrons excited in the conduction band
recombine with holes in the valence band.
This is typically done by exciting
electrons and holes into a higher band by
photo-excitation. The electrons and holes
then relax by plionon emission to the
lowest bands, and emit photons with
energies given by u> = En. This process
Is illustrated in Fig. 8.24(a) for the case
where the electrons and holes are initially
excited in the n — 2 bands. Fluorescence




is not observed from metallic nanotubes
because the hole in the valence band is
very rapidly refilled by electrons from the
occupied states above it..

Figure 8.25 shows a plot of the energy
gap defined by eqgn 8.21 as a function of
the tube diameter. Such a diagram is
called a ‘Kataura’ plot. The solid and
open circles coiTcspond to
semiconducting and metallic nanotubes
respectively. As we would expect for a
guantum  confinement effect, the
magnitude of the energy gaps decrease as
the tube diameter increases, varying
roughly as 1/e/. For any particular tube,
there is a series of energy gaps that
correspond to increasing values of 11.
The fundamental band gap (/vjl,) of the
semiconducting tubes moves into the
visible spectral region for tube diameters
smaller than about 5nm. Note that the
zero gap states of the metallic tubes are
not shown in




The discussion above makes no
consideration of excitonic effects. The
exciion binding energy EX in a carbon
nanotube is much larger than in a typical
bulk 1l V semiconductor due to its
reduced dimensionality. The binding
energy varies inversely with the diameter,
and is given roughly Uv E\ ~ 0.3/d when
E\ is measured ineV and d in 11111. This
implies that E\ 0.1 eV for <7 = 0.811111.
As explained in Chapter 1, tlie dominant
excitonic transition occurs at (EQ; — E\).




where £V; is the band gap and Ex is the
cxcitun binding energy. This implies that
the actual band gaps arc somewhat




Fig. 8.27 (a) Jablonski diagram lor C(>().
The* labels g* and ’if denote the parity of
the states. The solid arrows indicate
optical transitions, while the dashed
arrows indicate noil-radiative relaxatfon
processes. The time constants) indicated
art* typical values and can vary
somewhat from sample to sample, (b)
Absorption spectrum of z\. C\>o thin film
at room teinperatuie. | he inset shows the
absorption and normalized
photolumiriescence (PL) (dotted line)
spectra for crystalline Coo at- 10K. 1 lie
grey and black arrows indicate the onsets
of the So —* Si and So —* S2
transitions, respectively. Data taken (rom
Ren et al. (1991). © American Institute of
Physics, and Schlaich et al. (1995), ©
Elsevier, reprinted with permission.

Note that the time constants quoted here
are only typical values, and can vary
significantly  between samples. The
intersystem crossing rate in Cco is rela-
tively fast because the Si and Tj levels are
nearly degenerate.

This long radiative lifetime has to be
compared to the shorter inter- system
crossing time of 1.2 ns. The T t —> So
transitions arc strongly forbidden and




hence have a very low probability,
effectively making the decay route via Tj
a non-radiative channel. It is therefore
apparent from egn 5.5 that the radiative
efficiency is very low, with typical values
being around 10“3 for crystalline Coo at
low temperatures.

Figure 8.27(b) shows the absorption
spectrum of a solid C’oo thin film at
room temperature. The absorption at the
HOMO —* LUMO gap of 1.85 eV is
weak, as expected for dipole-forbidden
transitions, and the first strong feature is
observed at 2.7 cV. which corresponds to
the So —» S2 transition. The strong line
at 3.6 eV corresponds to a transition from
an odd parity lower level in the valence
band to the even parity S\ level, while the
line at 4.7eV arises from So —* Sfl
transitions, where S,, is the next odd
parity singlet excited state above S2.

The inset in Fig. 8.27 shows the
photolmnincscenec (PL) spectrum of
crystalline C’oo 10 K and the detailed
absorption spectrum at the HOMO-
LUMO band gap. As mentioned above,
electric-dipole transitions between the
HOMO and LUMO states are forbidden
by the parity .selection rule. This means
that the transitions must occur either by
higher-order processes (e.g. electric
quadrupole) or by a mechanism that
destroys the parity of the states. Examples
of the second type of mechanism include
crystal disorder and vibronic coupling.
These both lead to distortions of the
icosahedral symmetry of the Coo
molecule—static in the former case and
dynamic in the latter—and hence to a loss




of the A 5 ion symmetry that, defines the
parity.

Both the absorption and PL spectra in the
inset of Fig. 8.27 exhibit stlong vibionic
sub-structure, together with additional
peaks caused by t le fine structure of the
Sj level. The relative intensity of the
vibronic peaks in the PL spectrum is
found to vary significantly from sample
to sample on account of the strong
sensitivity to defects and crystalline
disorder. The purely electronic 0-0
vibronic line occurs at 1.84fieV and is
identified by the grey arrow. The fact that
this line is absent from the PL spectrum
clearly demonstrates that vibronic
coupling (i.e. coupling to plionmis) is an
important factor in allowing the radiative
emission lo occur.

Carbon bucky balls have potential
applications as optical limiting de-vices
in the spectral region 500-800 nm. The
absorption rate is small at low powers,
since the photon energy lies below the So
—> S2 threshold at 2.7 cV. As the power
Is increased, the photo-excited electrons
transfer rapidly to the lowest triplet state
by intersystem crossing and accumulate
there 011 account of the long lifetime of
the Ti level. These electrons can then
absorb light in the same spectral region
by making transitions to odd parity triplet
excited states. A new absorption channel
thus opens up at high intensities, which
thereby limits the transmission of high
power pulses. Such an optical limiter is
potentially useful for making safety
goggles to protect the eye from intense
laser pulses.




The lifetime of the T1 level is very long
(> 50 ms) because the transitions to the
So level violate both the spin and parity
selection rules.




